When
population mean = μ
population variance = σ2
random sample of size n
random samples: X1, X2, ..., Xn,
z-score/z-value/standard score z分數/標準化值 (Wikipedia/維基百科)
sum of samples/sample sum 樣本和 Sn = (X1 + X2 + ... + Xn) = ΣXi where i = 1 to n
sample mean 樣本平均數 x̄ = (X1 + X2 + ... + Xn)/n = Sn/n
sample variance 樣本變異數 s2
sample standard deviation 樣本標準差 s
sample size n
if σ is known:
Z = (x̄ - μ)/(σ/√ n) = (Sn - n)/σ√n
When n → ∞ (n >= 30),
Z ~ N(0, 1)
One special case of gamma distribution:
chi-square distribution 卡方分布 (χ2) α = v/2 or n/2, β = 2 for gamma distribution.
χ2 = (n - 1)s2/σ2 with n-1 degrees of freedom.
if σ is unknown and n is large:
s ≈ σ
Student t-distribution/Student's t-distribution 學生t分布
t-distribution t分布
T = (x̄ - μ)/(s/√ n) with n-1 degrees of freedom.
t-table:
row: probability α at tα
column - degree of freedom
參考資料
Essentials of Probability & Statistics for Engineers & Scientists (Walpole at el.),機率與統計 (繆紹綱譯,滄海2013),p201, 242-248
機率與統計 (陳鍾誠網站)
Mathematical statistics with applications in R, Ramachandran & Tsokos, 2nd edition (2015), p162-164, 191-194
Student's t-distribution (Wikipedia)
沒有留言:
張貼留言