normal distribution 常態分布/常態分配
Gaussian distribution 高斯分布
bell-shaped 鐘形
If random variable X has a normal distribution N(μ,σ2),
the probability density function (pdf) of X is:
f(x) = [1/√(2πσ2)]exp[-(x-μ)2/2σ2]
=====
Excel formulas:
NORM.DIST(X, μ, σ, cumulative)
if cumulative = true => cdf
if cumulative = false => pdf
=====
Z-score/Z-value/Z-transform/standard score z分數/z轉換/標準化值 (Wikipedia/維基百科)
How to get the Z-tansform from normal random variable X:
Z = (X - μ)/σ where μ = population mean and σ = populaiton variance
Z 是N(0,1) 的標準常態分布
(Note: The Z-transform used in statistics is not the Z-transform used is digital signal processing. 此處的Z轉換與數位訊號處理DSP中的Z轉換不同)
standard normal probability distribution 標準常態機率分布 N(0,1)
mean μ = 0 and variance σ2 = 1
======
Excel Formula:
Z = STANDARDIZE(X, μ, σ)
Inverse Z ie get Z score with known cumulative probability (area under curve):
e.g. α=5% => Zα/2 = NORM.INV(1-α/2, μ, σ) = NORM.INV(1-2.5%, 0, 1) since μ = 0 and σ = 1 for the standard normal distribution.
======
If X1...Xn are normally distributed as N(μ,σ2),
ΣZi2 = Σ((X - μ)/σ)2 is a χ2 distribution with n degrees of freedom.
ΣXi2 is a χ2 distribution with n degrees of freedom.
參考資料
Essentials of Probability & Statistics for Engineers & Scientists (Walpole at el.),機率與統計 (繆紹綱譯,滄海2013)
Mathematical statistics with applications in R, Ramachandran & Tsokos, 2nd edition (2015), p188
沒有留言:
張貼留言