2016/11/16

Normal Distribution 常態分布/常態分配

normal distribution 常態分布/常態分配
Gaussian distribution 高斯分布

bell-shaped 鐘形

If random variable X has a normal distribution N(μ,σ2),
the probability density function (pdf) of X is:

f(x) = [1/√(2πσ2)]exp[-(x-μ)2/2σ2]

=====

Excel formulas:

NORM.DIST(X, μσ, cumulative)

if cumulative = true => cdf
if cumulative = false => pdf

=====

Z-score/Z-value/Z-transform/standard score z分數/z轉換/標準化值 (Wikipedia/維基百科)
How to get the Z-tansform from normal random variable X:
Z = (X - μ)/σ where μ = population mean and σ = populaiton variance

Z 是N(0,1) 的標準常態分布

(Note: The Z-transform used in statistics is not the Z-transform used is digital signal processing. 此處的Z轉換與數位訊號處理DSP中的Z轉換不同)

standard normal probability distribution 標準常態機率分布 N(0,1)
mean μ = 0 and variance σ2 = 1

======

Excel Formula:

Z = STANDARDIZE(X, μ, σ)

Inverse Z ie get Z score with known cumulative probability (area under curve):
e.g. α=5% => Zα/2 = NORM.INV(1-α/2, μ, σ) = NORM.INV(1-2.5%, 0, 1) since μ = 0 and σ = 1 for the standard normal distribution.

======

If X1...Xn are normally distributed as N(μ,σ2),
ΣZi2 = Σ((X - μ)/σ)2 is a χ2 distribution with n degrees of freedom.
ΣXi2 is a χ2 distribution with n degrees of freedom.

參考資料

Essentials of Probability & Statistics for Engineers & Scientists (Walpole at el.),機率與統計 (繆紹綱譯,滄海2013)

Mathematical statistics with applications in R, Ramachandran & Tsokos, 2nd edition (2015), p188

沒有留言:

張貼留言