When
population mean = μ
population variance = σ2
random sample of size n
random samples: X1, X2, ..., Xn,
z-score/z-value/standard score z分數/標準化值 (Wikipedia/維基百科)
sum of samples/sample sum 樣本和 Sn = (X1 + X2 + ... + Xn) = ΣXi where i = 1 to n
sample mean 樣本平均數 x̄ = (X1 + X2 + ... + Xn)/n = Sn/n
sample variance 樣本變異數 s2
sample standard deviation 樣本標準差 s
sample size n
if σ is known:
Z = (x̄ - μ)/(σ/√ n) = (Sn - n)/σ√n
When n → ∞ (n >= 30),
Z ~ N(0, 1)
One special case of gamma distribution:
chi-square distribution 卡方分布 (χ2) α = v/2 or n/2, β = 2 for gamma distribution.
χ2 = (n - 1)s2/σ2 with n-1 degrees of freedom.
if σ is unknown and n is large:
s ≈ σ
Student t-distribution/Student's t-distribution 學生t分布
t-distribution t分布
T = (x̄ - μ)/(s/√ n) with n-1 degrees of freedom.
t-table:
row: probability α at tα
column - degree of freedom
參考資料
Essentials of Probability & Statistics for Engineers & Scientists (Walpole at el.),機率與統計 (繆紹綱譯,滄海2013),p201, 242-248
機率與統計 (陳鍾誠網站)
Mathematical statistics with applications in R, Ramachandran & Tsokos, 2nd edition (2015), p162-164, 191-194
Student's t-distribution (Wikipedia)
2016/11/17
2016/11/16
Normal Distribution 常態分布/常態分配
normal distribution 常態分布/常態分配
Gaussian distribution 高斯分布
bell-shaped 鐘形
If random variable X has a normal distribution N(μ,σ2),
the probability density function (pdf) of X is:
f(x) = [1/√(2πσ2)]exp[-(x-μ)2/2σ2]
=====
Excel formulas:
NORM.DIST(X, μ, σ, cumulative)
if cumulative = true => cdf
if cumulative = false => pdf
=====
Z-score/Z-value/Z-transform/standard score z分數/z轉換/標準化值 (Wikipedia/維基百科)
How to get the Z-tansform from normal random variable X:
Z = (X - μ)/σ where μ = population mean and σ = populaiton variance
Z 是N(0,1) 的標準常態分布
(Note: The Z-transform used in statistics is not the Z-transform used is digital signal processing. 此處的Z轉換與數位訊號處理DSP中的Z轉換不同)
standard normal probability distribution 標準常態機率分布 N(0,1)
mean μ = 0 and variance σ2 = 1
======
Excel Formula:
Z = STANDARDIZE(X, μ, σ)
Inverse Z ie get Z score with known cumulative probability (area under curve):
e.g. α=5% => Zα/2 = NORM.INV(1-α/2, μ, σ) = NORM.INV(1-2.5%, 0, 1) since μ = 0 and σ = 1 for the standard normal distribution.
======
If X1...Xn are normally distributed as N(μ,σ2),
ΣZi2 = Σ((X - μ)/σ)2 is a χ2 distribution with n degrees of freedom.
ΣXi2 is a χ2 distribution with n degrees of freedom.
參考資料
Essentials of Probability & Statistics for Engineers & Scientists (Walpole at el.),機率與統計 (繆紹綱譯,滄海2013)
Mathematical statistics with applications in R, Ramachandran & Tsokos, 2nd edition (2015), p188
Gaussian distribution 高斯分布
bell-shaped 鐘形
If random variable X has a normal distribution N(μ,σ2),
the probability density function (pdf) of X is:
f(x) = [1/√(2πσ2)]exp[-(x-μ)2/2σ2]
=====
Excel formulas:
NORM.DIST(X, μ, σ, cumulative)
if cumulative = true => cdf
if cumulative = false => pdf
=====
Z-score/Z-value/Z-transform/standard score z分數/z轉換/標準化值 (Wikipedia/維基百科)
How to get the Z-tansform from normal random variable X:
Z = (X - μ)/σ where μ = population mean and σ = populaiton variance
Z 是N(0,1) 的標準常態分布
(Note: The Z-transform used in statistics is not the Z-transform used is digital signal processing. 此處的Z轉換與數位訊號處理DSP中的Z轉換不同)
standard normal probability distribution 標準常態機率分布 N(0,1)
mean μ = 0 and variance σ2 = 1
======
Excel Formula:
Z = STANDARDIZE(X, μ, σ)
Inverse Z ie get Z score with known cumulative probability (area under curve):
e.g. α=5% => Zα/2 = NORM.INV(1-α/2, μ, σ) = NORM.INV(1-2.5%, 0, 1) since μ = 0 and σ = 1 for the standard normal distribution.
======
If X1...Xn are normally distributed as N(μ,σ2),
ΣZi2 = Σ((X - μ)/σ)2 is a χ2 distribution with n degrees of freedom.
ΣXi2 is a χ2 distribution with n degrees of freedom.
參考資料
Essentials of Probability & Statistics for Engineers & Scientists (Walpole at el.),機率與統計 (繆紹綱譯,滄海2013)
Mathematical statistics with applications in R, Ramachandran & Tsokos, 2nd edition (2015), p188
2016/11/10
Sampling Schemes 抽樣方法
抽樣方法可分為:
隨機抽樣
非隨機抽樣
隨機抽樣
simple random sampling 簡單隨機抽樣 - every element may be selected with equal chance
systematic sampling 系統抽樣/系統性抽樣 - every Kth element, e.g, 3, 10, 17, 24, ... (K=7)
stratified sampling 分層抽樣 - e.g. student age, university, major
cluster sampling 部落抽樣/叢集抽樣
multiphase sampling 多相抽樣 multistage sampling 多段抽樣
非隨機抽樣
convenience sampling 偶遇抽樣/方便抽樣
quota sampling 配額抽樣/定額抽樣
purposive sampling 主觀抽樣 / judgmental sampling 立意抽樣
snowball sampling 滾雪球抽樣
validity 效度
參考資料
Essentials of Probability & Statistics for Engineers & Scientists (Walpole at el.),機率與統計 (繆紹綱譯,滄海2013), p8
Mathematical statistics with applications in R, Ramachandran & Tsokos, 2nd edition (2015), p8-12
統計學-李柏堅-第01章:抽樣 (CUSTCourses影片)
隨機抽樣
非隨機抽樣
隨機抽樣
simple random sampling 簡單隨機抽樣 - every element may be selected with equal chance
systematic sampling 系統抽樣/系統性抽樣 - every Kth element, e.g, 3, 10, 17, 24, ... (K=7)
stratified sampling 分層抽樣 - e.g. student age, university, major
cluster sampling 部落抽樣/叢集抽樣
multiphase sampling 多相抽樣 multistage sampling 多段抽樣
非隨機抽樣
convenience sampling 偶遇抽樣/方便抽樣
quota sampling 配額抽樣/定額抽樣
purposive sampling 主觀抽樣 / judgmental sampling 立意抽樣
snowball sampling 滾雪球抽樣
validity 效度
參考資料
Essentials of Probability & Statistics for Engineers & Scientists (Walpole at el.),機率與統計 (繆紹綱譯,滄海2013), p8
Mathematical statistics with applications in R, Ramachandran & Tsokos, 2nd edition (2015), p8-12
統計學-李柏堅-第01章:抽樣 (CUSTCourses影片)
Mean, Variance and Standard Deviation 平均數、變異數、標準差
mean 平均數
standard deviation 標準差
population mean 母體平均數 μ = Σxi /N = (x1+x2+...+xN)/N, where i = 1 to N
population variance 母體變異數 σ2 = Σ(xi - μ)2/N, where i = 1 to N
population standard deviation 母體標準差 σ
sample mean 樣本平均數 x̄ = Σxi /n = (x1+x2+...+xn)/n, where i = 1 to n
sample variance 樣本變異數 s2 = Σ(xi - x̄)2/(n - 1), where i = 1 to n
sample standard deviation 樣本標準差 s
Note:
求標準差時只要將變異數開根號即可
σ2 和 s2的分母不同,母體變異數 σ2 的分母是N(或n),樣本變異數 s2的分母則是n - 1
Excel Formulas:
mean - AVERAGE()
population variance - VAR.P()
sample variance - VAR.S()
population standard deviation - STDEV.P()
sample standard deviation - STDEV.S()
參考資料
Population Mean and Sample Mean
Sample Standard Deviation vs. Population Standard Deviation
統計學-李柏堅-第01章:標準差 (CUSTCourses影片)
Mathematical statistics with applications in R, Ramachandran & Tsokos, 2nd edition (2015), p26-27
standard deviation 標準差
population mean 母體平均數 μ = Σxi /N = (x1+x2+...+xN)/N, where i = 1 to N
population variance 母體變異數 σ2 = Σ(xi - μ)2/N, where i = 1 to N
population standard deviation 母體標準差 σ
sample mean 樣本平均數 x̄ = Σxi /n = (x1+x2+...+xn)/n, where i = 1 to n
sample variance 樣本變異數 s2 = Σ(xi - x̄)2/(n - 1), where i = 1 to n
sample standard deviation 樣本標準差 s
Note:
求標準差時只要將變異數開根號即可
σ2 和 s2的分母不同,母體變異數 σ2 的分母是N(或n),樣本變異數 s2的分母則是n - 1
Excel Formulas:
mean - AVERAGE()
population variance - VAR.P()
sample variance - VAR.S()
population standard deviation - STDEV.P()
sample standard deviation - STDEV.S()
參考資料
Population Mean and Sample Mean
Sample Standard Deviation vs. Population Standard Deviation
統計學-李柏堅-第01章:標準差 (CUSTCourses影片)
Mathematical statistics with applications in R, Ramachandran & Tsokos, 2nd edition (2015), p26-27
2016/11/7
Eye Anatomy 眼睛構造名詞
眼睛有三層薄膜(membranes):
1. cornea & sclera 角膜&鞏膜
2. uvea 葡萄膜 (choroid 脈絡膜 + iris 虹膜 + ciliary body 睫狀體)
3. retina 視網膜
lens 水晶體/晶狀體
pupil 瞳孔
iris 虹膜
cornea 角膜
zonular fibers 懸韌帶
ciliary body 睫狀體
aqueous humor 房水/水狀液
anterior segment/anterior humor/anterior chamber 前段/前房
vitreous humor/vitreous chamber 玻璃體
retina 視網膜
choroid 脈絡膜
sclera 鞏膜
fovea 窩/凹 - with cone cells only
blood vessels 血管
optic nerve 視神經
optic disk 視神經盤 blind spot 盲點
macula lutea 黃斑
ganglion cell 神經節細胞
amacrine cell 無長突細胞/無軸突細胞
bipolar cell 雙極細胞
horizontal cell 水平細胞
retinal pigment epithelium 視網膜色素上皮
photoreceptor 感光體/光受器
rod cell 桿狀細胞 - sensitive to light level
cone cell 錐狀細胞 - sensitive to color
orbit 眼眶
eye extrinsic muscles 眼外肌
oculomotor muscle 眼動肌
rectus 直肌
oblique 斜
superior oblique muscle 上斜肌
superior rectus muscle 上直肌
inferior oblique muscle 下斜肌
inferior rectus muscle 下直肌
medial rectus muscle 內直肌
lateral rectus muscle 外直肌
electrooculogram/electrooculography (EOG) 眼電圖/眼動圖
相關資料
Human Eye (Wikipedia)
眼外在肌(Eye extrinsic muscles) (小小整理站)
聽覺原理與聽損原因 (電子耳資訊小站)
1. cornea & sclera 角膜&鞏膜
2. uvea 葡萄膜 (choroid 脈絡膜 + iris 虹膜 + ciliary body 睫狀體)
3. retina 視網膜
lens 水晶體/晶狀體
pupil 瞳孔
iris 虹膜
cornea 角膜
zonular fibers 懸韌帶
ciliary body 睫狀體
aqueous humor 房水/水狀液
anterior segment/anterior humor/anterior chamber 前段/前房
vitreous humor/vitreous chamber 玻璃體
retina 視網膜
choroid 脈絡膜
sclera 鞏膜
fovea 窩/凹 - with cone cells only
blood vessels 血管
optic nerve 視神經
optic disk 視神經盤 blind spot 盲點
macula lutea 黃斑
ganglion cell 神經節細胞
amacrine cell 無長突細胞/無軸突細胞
bipolar cell 雙極細胞
horizontal cell 水平細胞
retinal pigment epithelium 視網膜色素上皮
photoreceptor 感光體/光受器
rod cell 桿狀細胞 - sensitive to light level
cone cell 錐狀細胞 - sensitive to color
orbit 眼眶
eye extrinsic muscles 眼外肌
oculomotor muscle 眼動肌
rectus 直肌
oblique 斜
superior oblique muscle 上斜肌
superior rectus muscle 上直肌
inferior oblique muscle 下斜肌
inferior rectus muscle 下直肌
medial rectus muscle 內直肌
lateral rectus muscle 外直肌
electrooculogram/electrooculography (EOG) 眼電圖/眼動圖
相關資料
Human Eye (Wikipedia)
眼外在肌(Eye extrinsic muscles) (小小整理站)
聽覺原理與聽損原因 (電子耳資訊小站)
2016/11/3
Moment-Generating Function 動差生成函數/力矩產生函數
Mx(t) = E(etx) = Expected value of exponential function exp(tx).
Mx(t) = 1 + E[1 + tX + (tX)2/2! + ... + (tX)n/n!
Derivatives of the moment-generation function with t=0:
Mx(n)(0) = E[Xn], n = 1, 2, 3, ...
first moment - mean 平均數
second moment - variance 變異數
third moment - skewness 偏度/歪度/偏態
fourth moment - kurtosis 尖度/峰度
參考資料
動差生成函數 (Moment Generation Function) (陳鍾誠網站)
Mathematical statistics with applications in R, Ramachandran & Tsokos, 2nd edition (2015), p96-100 (Section 2.6)
Mx(t) = 1 + E[1 + tX + (tX)2/2! + ... + (tX)n/n!
Derivatives of the moment-generation function with t=0:
Mx(n)(0) = E[Xn], n = 1, 2, 3, ...
first moment - mean 平均數
second moment - variance 變異數
third moment - skewness 偏度/歪度/偏態
fourth moment - kurtosis 尖度/峰度
參考資料
動差生成函數 (Moment Generation Function) (陳鍾誠網站)
Mathematical statistics with applications in R, Ramachandran & Tsokos, 2nd edition (2015), p96-100 (Section 2.6)
訂閱:
文章 (Atom)